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The calculat ion of the  m e a n  square ampl i tude  of thermM mot ion  of an  a t o m  in a molecular  crystal  
is discussed. I t  is shown tha t ,  wi th  cer ta in  simplifying assumpt ions  concerning the  form of the  
force field, there  should be a l inear re la t ion be tween  the  mean  square ampl i tude  and  the  square 
of the  dis tance of the  a tom from the  molecular  centre  of mass. The re la t ion is found  to hold ap- 
p rox imate ly  for naph tha lene  and  an thracene ,  and  its va l id i ty  and  l imita t ions  are discussed. 

1. I n t r o d u c t i o n  

In the first paper of this series (Higgs, 1953; to be 
referred to henceforth as I) the effective electron 
density derived from the Laue scattering of X-rays 
by a crystal was shown to be identical with the thermal 
average of the density at the temperature of the 
experiment. An expression (equation 1-18) was de- 
rived which related this density to the electron 
distribution in a lattice of stationary atoms and to 
the mean square amplitudes and mean products of 
amplitudes of thermal vibration of the atoms in the 
actual crystal. The peak density at the centre of a 
carbon atom was computed as a function of its r.m.s. 
amplitude of vibration, a Hartree field being assumed 
for the distribution in the stationary atom and the 
thermal motion being taken to be isotropic. 

In this paper the problem of calculating r.m.s. 
amplitudes for atoms in molecular crystals is consid- 
ered, with particular reference to naphthalene and 
anthracene. In § 2 two different kinds of contribution 

to the total mean square amplitude u 2 are distin- 
guished" that  of the 'rigid-body' vibrations in which 
each molecule moves as an almost rigid unit, and that  
arising from the internal normal modes of each mole- 
cule, interaction constants between these two types of 
displacement being neglected. In § 3 the rigid-body 
vibrations are classified further into translational and 
rotational modes, further interaction constants being 
neglected, and an expression for their contribution to 
the mean square amplitude is derived from a simple 
model of the intermolecular force field. The calcula- 
tion of the contribution from the internal modes of 
the molecule is discussed in § 4. 

In § 5 use is made of some unpublished results of 
Cruickshank (1953) to obtain values of u 2 in naph- 
thalene and anthracene derived from the published 
X-ray analyses (Abrahams, Robertson & White, 
1949a, b; Mathieson, Robertson & Sinclair, 1950a, b). 
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I t  is found that  the variation of u 2 from one atom to 
another within each molecule is roughly consistent 
with a thermal motion composed mainly of translation 
(lattice vibrations) and isotropic rotation (librations). 
The validity and limitations of this interpretation are 
discussed in § 6. 

The Appendix contains the derivation of some for- 
mulae used in the body of the paper. 

2. I n t e r n a l  a n d  r i g i d - b o d y  c o n t r i b u t i o n s  to  u 2 

In any discussion of the vibrations of a molecular 
crystal it is useful to distinguish between coordinates 
describing the internal distortion of the molecules and 
those describing their relative motion. If we consider 
a general small displacement of the n atoms in a 
single molecule from their equilibrium configuration, 
we may completely specify the internal distortion by 
the 3 n - 6  components (3n -5  for a linear molecule) 
of a column vector y and the movement of the mole- 
cule as a whole by the 6 components (5 for a linear 
molecule, of a column vector r I. The former consist 
of extensions of bonds, distortions of bond-angles, 
torsions of bonds, etc. ; the latter of translations and 
rotations of the whole molecule. An alternative de- 
scription is provided by another column vector x, 
whose 3n components specify the atomic displacements 
relative to a triad of Cartesian axes fixed in space: 
we adopt the convention that  the components 
xj(j = 3 i - 2 ,  3 i - 1 ,  3i) refer to the ith atom and 
denote these briefly by the 3-vector ui. 

For small displacements the alternative systems are 
related linearly by a coordinate transformation which 
may be written as 

x = a y + a r l ,  (1) 

or as the inverse equations, 

y = b x ,  (2) 

rl = ~ x .  (3) 

As is shown in the Appendix, the rectangular matrices 
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ct and b may be written down immediately in terms 
of the geometry of the molecule. If the transformation 
is completed by the definitions, 

a -- M-Ib'G -I, (4) 

-- (D-la'M, (5) 

where M is the diagonal matrix of atomic masses 
(M1j = m~, for j -- 3i-2, 3i-I, 3i) and 

G = bM-Ib ', (6) 

(]) = a ' M a ,  (7) 

then the kinetic energy splits up into two independent 
parts, the one arising from internal distortion, the 
other from motion of the molecule as a rigid body: 

T = ½~ 'G- l~+½~'¢f l .  (8) 

This equation was first derived by Wilson (1939) for 
the special case, 1] = 0. 

The potential energy of a free molecule depends 
only on its internal distortion and may be written in 
the first (harmonic) approximation as 

V = ½Y'F0y, (9) 

where F o is a matrix of force constants and inter- 
action constants. I t  is obvious from inspection of 
equations (8) and (9) that  the normal coordinates for 
molecular vibrations fall into two distinct sets" the 
first set, q~, consists of linear combinations of y 
and corresponds to frequencies % which are solutions 
of the secular equation for internal vibrations, 

[GFo-4~2~2I[ = 0; (10) 

the second, q~, is formed from rl and describes free 
rigid-body motion (~ = 0). 

When the molecule is situated in a crystal, equation 
(9) is no longer valid: the potential energy is, in the 
harmonic al~pro~mation , of the more general form, 

1%, 

V = ½ 2 {Y~F~Y,+*l~K~rl~+2y~k~orl,}, (11) 
~,a=l 

in which the vectors yq and tie refer to the ~th mole- 
cule of the N which constitute the crystal. The inter- 
molecular forces are here represented by the matrices 
K~,, k~, (all Q, a), F~(~ 4= a) and (F~-Fo) .  In general, 
owing to the presence of the last term in (11), it is no 
longer possible to separate the normal modes rigor- 
ously into internal and rigid-body vibrations of the 
molecules. However, there is ample spectroscopic 
evidence that  most of the vibration frequencies of 
many organic molecules do not depend to any large 
extent on the physical state of the substance. That is, 
as one would expect, the intermolecular forces are 
much weaker than the intramolecular forces: in (11) 
F~ -- Fo, F~  - O (~ 4= ~) and the elements of k are 
small compared with those of F o. Therefore it seems 
reasonable to neglect k and use the simplified potential, 

N N 

V -- ½ ~ Y~Foy~+ ½ .~ rI~K~,B~. (12) 

The separation of the normal coordinates into ql and 
q2 is now valid once more. 

In these circumstances it is possible to effect a 

corresponding decomposition of u~, the mean square 
amplitude of thermal motion of the ith atom in any 
molecule: for u i is related to ql and q2 by a linear 
transformation, 

U i ---- c i l q l - ~ C i 2 q 2 ,  

from which it follows that  
2 t t ! ~, 

ui = trace {cilqlql C~l+ ci2q2q2ci2 } (13) 

(ql and q2 being different sets of normal coordinates, 
qlq2 = 0). The two terms of (13) may be interpreted 
as the contributions from internal and rigid-body 
modes respectively: 

2 2 2 u~ = (u~),,u+ . (14) ( U i ) r . - b .  

The intermolecular forces being comparatively weak, 
the second term of (14) is by far the larger of the two. 
and to the first may be assigned the value appropriate 
to a free molecule. 

3. A n  a p p r o x i m a t e  e x p r e s s i o n  for (U~)r.-b. 

I t  is shown in the Appendix that  the rigid-body term 
in the kinetic energy (8) may be written (as in A14) 
as the sum of independent terms arising from transla- 
tion of the centre of mass (Tit) and rotation about that  
centre (Tir). Let us assume a model for the intermolec- 
ular potential such that  there is~no interaction between 
translation and rotation, i.e. 

Vr.-b. = ½ ~  (rl~0Kt0arltoa+~;~Kr0~rlr~}. (15) 

There being now no cross-terms in either the kinetic 
or the potential energy, 2 (U~)r.-b. is the sum of two 
terms, one arising from translation (the lattice or 
'acoustic' modes), the other from restricted rotation 
(libration) • 

2 2 (U~)r.-b. = (U~)t+(U~)r. (16) 

Let us consider the dependence of these two terms 
on the position of atom i in the molecule. Whatever 
the form of the first term o~ (15) may be, it is obv{ous 
that  2 (ui)t, arising as it does from translation, is the 
same for all atoms" 

(u2)t = A ,  (17) 

where A is some function of the temperature. 
On the other hand (U2)r varies from atom to atom 

in a way which depends on the form of the second term 
of (15). In view of the present scarcity of evidence 
concerning this force field for libration it seems to be 
necessary to adopt some simple model. Let us assume 
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tha t  each molecule rotates in a time-independent 
external field, which may  be regarded as an average 
of tha t  due to interaction with its neighbours, and tha t  
this field does not  depend on the direction of the axis 
of rotation. Then the second term of (15) contains no 
cross-terms between the coordinates of different mole- 
cules, and the potential for rotation of a single mole- 
cule may  be written as 

Vr = KrTl~rlr, (18) 

where Kr is a force constant for libration. 
In order to calculate (U~)r we require an expression 

• t 

for the thermal average ~rTlr. The general expression 
for such a matrix is that of (I-8); it leads to the 
formula 

VlrTir = ½h(Kr(l)r) -½ coth (hK½r(l)r½/2kT), (19) 

in which T is the thermodynamic temperature,  h and ]c 
have their usual significance and (l)r is defined by 
(A13). Now the spectroscopic evidence indicates tha t  
the libration frequencies of molecular crystals are 
quite low, usually in the region of 100 cm. -1 (see, for 
example, Rousset, 1948). Since these frequencies are 
the solutions of the secular equation, 

]KrI-4y~gc~2~r I = 0 ,  

the argument of the function in (19) is essentially 
hc~,/2kT. At ordinary temperatures (T ~ 290 ° K.) and 
with 9 ,-- 100 cm. -1 this quant i ty  is small enough for 
the approximation coth x -  x -~ to be a good one; 
(19) becomes 

nrTlr ~ l c T I / K r .  (20) 

(This approximation is essentially tha t  of classical 
mechanics, h -- 0.) 

From equations (20) and (A1) it follows tha t  

2 (U~)r = 21cTR~/Kr, (21) 

where R i is the distance of atom i from the molecular 
centre of mass. 

Combining (16), (17) and (21) we obtain for the total  
contribution from rigid-body modes 

2 (Ui)r.-b. -- A +BR~ , (22) 

in which A and B are temperature-dependent.  

4. The calculation of (up) int 

I t  is evident from equations (1), (8), (9) and (I-8) 
tha t  the formula from which 9 (Ui)int. must be cal- 
culated is 

3i 
U 2 ' , ( / ) i n t .  ~- ~ a i y y  a / ,  (23) 

]'=3i-2 
in which 

y y ' =  ½h(GF0)-½ coth (h(GFo)½/2lcT}G,  (24) 

where G is defined by equation (6), and a / i s  the j t h  

row of a. Using (4) and (24), we transform (23) into 
the form 

3i 
• 2 (Ui)int. : ½ ~ m i  -2 ~ '  b/G-I(GFo) -½ 

]=3i--2 

x coth (h(GFo)½/2kT}b j ,  (25) 

where b] is the j t h  column of b. If the vibration 
frequencies ~o, found by  solving equation (10), are 
low (hro/kT < 1), we may  use the approximation 
coth x - x - l ( x  < 1) to simplify (25) as follows" 

3i 
u 2 b~(GFoG)-lbj (26) ( i)i~t. - k T m T  2 ~ 

1=3i-2 

Conversely, if the frequencies are high (h~,o/kT >> 1), 
the asymptotic relation coth x --- 1 (x -+ c~) leads to 
the approximate formula 

3i 
( u i ) i ~ . -  ½~m~ -2 ~ b/G-I(GFo)-½bi .  (27) 

]=3i--2 

Equations (26) and (27) are respectively the clas- 
sical and zero-point limits of (25). These results 
enable us to calculate 2 (Ui)int. from the geometry of 
the molecule, as expressed by the transformation 
matr ix b: and any hypothetical  force field F 0. 

The choice of F 0 depends upon two considerations: 
on the one hand we have ideas concerning the general 
form of the field based on quantum-theoretical  treat- 
ments of the electronic structure;  on the other hand 
we want the solutions v 0 of equation (10) to agree as 
closely as possible with the fundamental  vibration 
frequencies determined spectroscopically. In  practice, 
a compromise is usually at tempted,  for most of the 
a priori quantum mechanical calculations carried out 
so far do not lead to very good quanti tat ive agreement 
with the observed spectra. 

In  the main, force fields are constructed by semi- 
empirical procedures having as their point of departure 
the 'simple valence force field' introduced by Bjerrum 
(1914)" F 0 is taken to consist mainly of force constants 
which may  be transferred between similar structural 
units of related molecules, and small off-diagonal 
interaction constants are postulated to account for 
details of the spectra. These extra constants have 
been interpreted theoretically by Coulson, Duchesne 
& Manneback (1948) in terms of resonance effects, 
changes of hybridization and interactions between 
non-bonded atoms. Such procedures are quite success- 
ful in dealing with molecules built from simple atomic 
groupings linked by chains of single bonds, but  less 
so in coping with conjugated systems, where the form 
of the field is determined largely by the mobile elec- 
trons and the resulting interaction constants are large. 
I t  is in describing fields of the latter type tha t  a 
theoretical approach is most helpful" for example 
Coulson & Longuet-Higgins (1948) have shown how 
these fields may  be obtained by the simple molecular- 
orbital technique in terms of such quantities as the 
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mobile orders and the self and mutual  polarizabilities 
of the bonds. 

A calculation of the type  described in this section 
has been carried out on the carbon skeleton of naph- 
thalene in order to find the relative magnitudes of 

2 (ui)~t. for the various carbon atoms" the details of 
this calculation were described in the author 's  M. Sc. 
thesis (Higgs, 1952, chap. 4). The assumed force field 
was tha t  given by  Coulson & Longuet-Higgins (1948) 
with  the addition of force constants for bending of the 
skeleton; the same field for in-plane vibrations was 
used by Jacobs (1951) in her calculation of the Ag 
frequencies. The formula employed was (26), although 
a t  20 ° C., the temperature at  which the X-ray mea- 
surements of Abrahams, Robertson & White (1949a) 
were carried out, the ratios hvo/kT could hardly be 
called small (see Higgs, 1952); nevertheless, it was 
thought  tha t  the simple classical appro×imation would 

(Ui)int. over give some indication of the variation of 
the  molecule. The results of the calculation are given 
in Table 1 (see Fig. l(a) for labelling of atoms). 

Table 1. Mean square amplitudes in naphthalene 

262 2 2 C di=. ui (u0r.-b. /~/Z 2 
Atom (A 2) (A 2) (A 2) 

A 0-005 0-180 0-175 3-25 
B 0.006 0-159 0.153 1.75 
C 0-004 0-129 0-125 0.25 

B D B D F A ~ E  A ~ G  
D' B' F' D' B" 

(a) (b) 

Fig. 1. (a) Naphthalene. (b) Anthracene. 

5 .  E x p e r i m e n t a l  v a l u e s  of  ~2.: n a p h t h a l e n e  a n d  

a n t h r a c e n e  

In  order to test  the validity of equation (22) let us 
consider the values of u~ in naphthalene and anthracene 
a t  20 ° C., for which the detailed results of X-ray anal- 
yses are available (Abrahams, Robertson & White, 
1949a, b; Mathieson, Robertson & Sinclair, 1950a, b). 
Ahmed & Cruickshank (1952) have refined the crystal 
and molecular structures by a method which minimizes 
the mean difference between the observed structure 
factors and those calculated from a model with atoms 
arranged in roughly the expected configuration. In  
their earlier calculations they assigned to the various 
carbon atoms the same isotropic vibration amplitude, 
but  more recently (Cruickshank, 1953) they  have used 
a more flexible method which allows for different 

2 derived from isotropic thermal motions. Values of u~ 
Cndckshank's B values are given in Tables 1 and 2. 
(The B value for an atom is a parameter in its tern- 

perature factor, isotropic thermal motion being as- 
sumed. In  the notation of I it  is defined by the relation 

gi = f i  exp ( -B~ sin 2 0/)?) (28) 
connecting the scattering factor for a vibrating atom 
with tha t  for a s tat ionary one. I t  follows from equa- 
tions (28), (I-9) and (I-11a) tha t  

ui2 = 3Bj8~%) 

Table 2. Mean square amplitudes in anthracene 

" R~/z" 

Atom (A 2) 
A 0-152 7 
B 0.131 4 
C 0-096 1 
D 0.108 1 

We may  now find 2 (Ui)r.-b., for naphthalene at  least, 
2 the appropriate value of by  subtracting from each u~ 

2 (u~)~,t. calculated in § 4; these quantities are also 
tabulated in Table 1. The corresponding values of R~ 
are calculated on the assumption tha t  the carbon 
atoms lie at  the vertices of coplanar regular hexagons 
(Fig. l(a)). When (Ui)r._b. is plotted against R~/12, 
where l is the C-C bond length, the three points 
(A, B, C) lie reasonably close to a straight line (Fig. 2, 
middle graph). 

Since no calculations of (u~)~t. have been made for 
anthracene, we cannot plot values of 2 (ui)r.-b. for this 
molecule. However, as is shown in Fig. 2 (topmost 
graph), the 2 (U~)int. values for naphthalene va ry  so 
l i t t le - - they  are in any case only about 4 % of the total  

2 itself against R~/l 2 is nearly u~-- that  the graph of u~ 
linear. So we may  expect tha t  if, as is very likely, 
the anthracene " (ui)~ut. values vary  only slightly over 

2 against R~/12 will again the molecule, the graph of u i 

Naphthalene 

0.20 0 1 2 3 
I | I I  | , 

A R2/I 2 

B 
0"15Qz A D~,~A 

(h2) 

0"10 ÷ 
C • -- I~ 2 

.~ -- (G2)i=. 

R~'P 
0"05 ' I I , t I ' ~ " 

0 2 4 6 " 

Anthracene 

Fig. 2. Variation of u s with R ~. 
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be nearly linear: this is indeed what happens (Fig. 2, 
bot tom graph; the data  are taken from Table 2, and 
the labelling of the atoms is illustrated in Fig. l(b)). 

6. D i s c u s s i o n  

I t  appears from the foregoing considerations that ,  for 
naphthalene and anthracene at  least, the formula (22) 
provides quite a good approximate description of the 
thermal motion: the implication is tha t  most of the 
variation in the carbon peak densities noticed by 
Abrahams et a l .  may be accounted for in terms of 
Fourier-series termination errors (allowed for by the 
methods of Ahmed & Cruickshank) and thermal 
libration. However, it must be stressed tha t  this 
conclusion is only provisional. The data  supplied by 
Cruickshank are the results of preliminary work and 
may be modified slightly by further calculations. 
Besides, these data  are scarcely sufficient to establish 

the linearity of the u 9 versus R 2 relation. 
Finally, there are a few comments to be made on the 

deviations of the experimental points from strict 
linearity, if in fact these are significant: in particular 
we may  note tha t  atoms C and D in anthracene, 

2 having the same value of R i ,  do not have equal u i 

values. The calculated 2 (ui)i,t. values are so small 
tha t  we may  probably compared with the total  u~ 

discount internal molecular vibrations as a cause of 
these deviations. A much more likely explanation is 
tha t  they  are due to anisotropy of the librations, for 
to assign an isotropic force field (equation (18)) to a 
molecule in such an anisotropic environment as a poly- 
acene crystal is really a drastic oversimplification; no 
doubt further work on the anisotropy of the atomic 
motions, as revealed by the X-ray data, will throw 
some light on this matter .  Moreover, to return to the 
problem which provided the starting point for this 

2 investigation, there must  be some error in the u i 

values deduced from the X-ray data  due to the use 
of scattering factors for isolated atoms; any re- 
distribution of electronic charge occurring during 
bonding will give rise to departures from linearity in 

2 2 the graph of apparent u i v e r s u s  R i. There is an ob- 
vious need for further investigations to distinguish 
decisively between the effects of thermal motion and 
those of charge transfer. 

I am greatly indebted to Prof. C. A. Coulson for his 
advice and encouragement during the course of this 
work and to Dr D. W. J. Cruickshank for much help- 
ful correspondence and for his permission to quote 
unpublished results. 

A P P E N D I X  

Given the definition of the quantities y, we may write 
the matr ix b of equation (2) in terms of the geometry 
of the molecule. General formulae for several commonly 

used types of internal coordinate have been given by 
Wilson (1939, 1941): for example, if a particular co- 
ordinate y is the extension of the bond connecting 
atoms i and j ,  then y is related to x by the formula 
(in 3-vector notation), 

(U i -U j ) .  (u i -u j )  
Y = ]Ui-Uj]  ' 

where Ui is the 3-vector defining the equilibrium 
position of atom i relative to the origin of the Cartesian 
coordinates. 

Similarly, in (1) the matr ix cx may  be written in 
terms of the molecular geometry: if ~]1, ~]2, ~]3 (3-vec- 
tor Tit) are the Cartesian components of the displace- 
ment of a certain point in the molecule during a small 
rigid-body motion (y = 0), and ~4, ~5, ~e (3-vector Tlr) 
are the components relative to the Cartesian axes of 
the rotation of the molecule during such a motion, 
then during the motion the displacement of atom i is 
(in 3-vector notation) 

in which 
U i  = T I t + ~ r × R i ,  (A1) 

R i = U i - U 0  , (A2) 

where U 0 is the equilibrium position of the reference 
point relative to the Cartesian origin. Equat ion (A1) 
constitutes rows 3 i - 2 ,  3 i - 1 ,  3i of (1) with y = 0, 
thus defining a. 

We now have y defined generally and 11 defined 
only for rigid-body motion; to define the coordinates 
completely we need to generalize the definition of 11, 
tha t  is, to find the matrix ~ of (3): the matr ix a of 
the inverse equation (1) will then be defined uniquely. 
So far the only known relations between the unknown 
matrices, a, ~, and a, b are those expressing the recip- 
rocal nature of (1) and (2), (3): 

ab + a~ = I; (A3) 

ba  = I1, bcc = 0 ,  
(A4) 

~a  = O, ~ a  = I , ,  

where I1 .L are the unit matrices of orders (3n-6) ,  
6 respectively. These equations are not sufficient to 
define a, ~ uniquely. 

To make the problem soluble uniquely we add the 
requirement tha t  the kinetic energy shall be expres- 
sible as the sum of independent contributions from the 
velocities )> and Ti. In  Cartesians the kinetic energy is 

T = ½~'M:¢; 

using (1) we express it in terms of ~ and ~! as 

T = ½~'(a'Ma)~+½~l ' (cx'Ma)/ l+~'(a 'Ma)/1  . (A5) 

We require the cross-term in (A5) to be identically 
zero • 

a ' M a  = 0 .  (A6) 

Equation (A6) may be regarded as a set of 3 n - 6  
relations between the rows of a ;  so also may the second 

AC8 8 
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equation of (A4). Since the 6 coordinates 1] are linearly 
independent, the 3n × 6 matr ix  ¢t is of rank 6, so there 
are precisely 3 n - 6  linearly independent relations be- 
tween its rows. Thus the sets of (A4) and (A6) must  
be equivalent ways of writing the same relations, tha t  
is, a ' M  must  be expressible in terms of b" 

a ' M  -- A b ,  (A7) 

where A is a regular (3n -6 )  ~ matrix. All tha t  remains 
now is to determine A; this is done by  using (A7) 
and the first equation of (A4)" 

bM-~b 'A ' = I~, 
whence 

A = G -~ , (A8) 

where G, defined in (6), is Wilson's inverse kinetic 
energy matrix. Equations (4) and (8) now follow from 
A(5), (AT) and (A8); equation (5) is obtained by pre- 
multiplying (A3) by cdM and using (A6). 

From equation (A 1) we may  derive the explicit form 
of the ' total  inertia matr ix '  O, defined in (7). If we 
denote the j t h  row of ¢x by %, then by comparing (1) 
and (A1) we find 

( [o,~_~'~ 1, 0, 0, 0, z~, 
~o~a~_~] = O, 1, O, - -Z  i, O, 
\aai / O, O, 1, Y i , - X i ,  

where Xi,  Yi, Zi are the Cartesian components of Ri. 
Equat ion (7) now becomes 

0 - - ~ m  i 
i = 1  

(" 1, 0, 
| 0, 1, 
| 0, 0, 

x [ O, -- Zi, 
Zi, O, 

~.-Yi, Xi, 

0, 0, Zi, -- Yi "~ 
O, --Z~, O, X i  ! ~, Y~, -X~, 0 
r~, r~+z~, -x~Y,, - £ z ,  |" 

-X~, - Y~X~, z~+X~, - Y~z~ | 
O, -z~X~, -z~Y~, X~+ Y~.) 

(A9) 

I t  is obvious on inspecting (A9) tha t  O may  be 
simplified by choosing the centre of mass as the ref- 
erence point for defining ~]t, tha t  is, 

n 

U 0 = m -~ ~ m i U i ,  (A10) 
i = 1  

where 

m = ~ mi.  (Al l )  
i=1 

Ecluation (A10) may be written as 

Z miR~ = 0 ,  

so (A9) becomes 
[mI, 0 )  

¢ = \ 0 ,  Or.  ' 
(A12) 

in which Or is the tensor of moments and products of 
inertia relative to the centre of mass: 

( '  " n Y i + Z i ,  - - X i Y i ,  - X i Z i \  
Or = ~, mi - YiXi,  Zi2+Xi,~ - Y~Zi } . (A13) 

~=~ \-z~X~, -z~y~, X~+ y~/ 

The rigid-body term in the kinetic energy (8) now 
splits up again into two terms" 

Tr.-b. = ½ml:l~TIt+½fi;Or~lr. (A14) 

The definition (3) of rl may  be writ ten explicitly in 
3-vector notation (Or being regarded as a dyadic) as 

Ft 

~t  = m -1 ~-~" m i u i ,  (A 15) 
i = 1  

n 

these vectors are now the displacement of the centre 
of mass and the mean rotation about tha t  centre 
respectively, and R~ is the vector from tha t  point to 
atom i in the equilibrium configuration. 
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